首页> 外文OA文献 >A framework for regularized non-negative matrix factorization, with application to the analysis of gene expression data.
【2h】

A framework for regularized non-negative matrix factorization, with application to the analysis of gene expression data.

机译:正则化非负矩阵分解的框架,应用于基因表达数据的分析。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Non-negative matrix factorization (NMF) condenses high-dimensional data into lower-dimensional models subject to the requirement that data can only be added, never subtracted. However, the NMF problem does not have a unique solution, creating a need for additional constraints (regularization constraints) to promote informative solutions. Regularized NMF problems are more complicated than conventional NMF problems, creating a need for computational methods that incorporate the extra constraints in a reliable way. We developed novel methods for regularized NMF based on block-coordinate descent with proximal point modification and a fast optimization procedure over the alpha simplex. Our framework has important advantages in that it (a) accommodates for a wide range of regularization terms, including sparsity-inducing terms like the [Formula: see text] penalty, (b) guarantees that the solutions satisfy necessary conditions for optimality, ensuring that the results have well-defined numerical meaning, (c) allows the scale of the solution to be controlled exactly, and (d) is computationally efficient. We illustrate the use of our approach on in the context of gene expression microarray data analysis. The improvements described remedy key limitations of previous proposals, strengthen the theoretical basis of regularized NMF, and facilitate the use of regularized NMF in applications.
机译:非负矩阵分解(NMF)将高维数据浓缩为低维模型,但前提是只能添加数据,而不能相减。但是,NMF问题并没有独特的解决方案,因此需要其他约束条件(正则化约束条件)来推广信息性解决方案。正则化NMF问题比传统NMF问题更为复杂,因此需要一种以可靠方式合并了额外约束的计算方法。我们基于带有近点修改的块坐标下降和基于alpha单纯形的快速优化过程,开发了用于正则化NMF的新颖方法。我们的框架具有重要的优势,因为它(a)适应各种正则化术语,包括诸如[公式:参见文本]惩罚之类的稀疏性术语,(b)保证解满足最优性的必要条件,确保结果具有明确的数值含义,(c)可以精确控制解决方案的规模,(d)计算效率高。我们在基因表达微阵列数据分析的背景下说明了我们的方法的使用。这些改进描述了对先前提案的主要限制的补救措施,增强了正则化NMF的理论基础,并促进了正则化NMF在应用程序中的使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号